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Abstract
We consider a generalized belief combination operator in which the set intersection is

replaced by a symmetric binary operator. Using classical Markov chain theory we study the
convergence of the sequence of such combinations. We show how to apply our results to the
case of classical belief combination operator.
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1 Introduction: motivation and definitions

The belief functions theory is considered as a framework for reasoning under uncertainty, it is
connected to other similar frameworks such as probability, possibility and imprecise probability
theories. This theory has applications in various fields: for example, in recent years there is
increasing interest from researchers who study social [2], neural [3] and other complex networks [10].

As far as we are concerned, the question of the convergence of the iterative application of
combination rules 1, has not been considered yet, despite its importance for contemporain works.
For example, in [1] authors associate different belief masses for each Twitter relationship type: one
mass for retweet, another for mention and yet another mass for reply. Using these masses they
estimate the influence/popularity of a Twitter user using the combination of the belief masses
of his mentions, retweets of his tweets, and replies to him. The cumulative number of retweets,
replies and mentions only grows over time. Even if we restrict ourselves to some specific period
of time this number can be very large (hundreds of thousands) for some Twitter accounts. In
this paper, using Markov chain theory, we study the convergence of the iterative application of a
generalized combination rule. The idea of generalized combination rule goes back to works [5, 11].
In this paper, we use a generalized rule defined in [1].

In Subsection 1.1 we recall basic notions from classical belief theory. In Subsection 1.2 we
describe our generalization and formulate our main question about the conditions under which
the sequence of iterative applications of the combination rule converges. In order to answer
this question we use classical Markov chains theory. For the sake of consistency, we recall main
notions and theorems from this theory (Subsection 1.3). In Section 2 we discuss properties of the
generalized combination rule (also known as Dempster-Shafer-Smets combination operator), we
show whether the iterative application of a combination rule converges and how our results can
be applied to the classical Dempster-Shafer-Smets theory. Finally, we discuss possible directions
of the further research in Section 3.

1We use the phrases “combination operator” and “combination rule” interchangeable.
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1.1 Dempster–Shafer–Smets operator
The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was
firstly introduced by Dempster in the context of statistical inference, and was later developed by
Shafer and Smets [7, 9].

In the following, we are going to remind the basic concepts of belief functions theory. Let Ω be
a finite set, denote by PpΩq the set of all subsets of Ω. A mass m is a function m : PpΩq Ñ r0, 1s
such that

ř

XPPpΩqmpXq “ 1. The mass mpXq expresses the part of belief that supports the
subset X of Ω.

Belief functions theory allows, not only the representation of the partial knowledge, but
also the information fusion [8]. This is usually done by the conjunctive combination rule [9].
Considering two mass functions m1 and m2, the conjunctive combination rule, denoted by X© , is
defined as follows:

pm1 X©m2qpCq “
ÿ

AXB“C
APPpΩq
BPPpΩq

m1pAqm2pBq, @C P PpΩq (classical combination rule)

1.2 Generalized belief functions and the question of convergence
In classical Dempster-Shafer-Smets theory we should use PpΩq as a domain of mass functions. In
this paper we propose to use any finite set Λ in place of PpΩq. In this generalized setting, a mass
function have the following type m : Λ Ñ r0, 1s and satisfies the equation

ř

xPΛ

mpXq “ 1.

The generalized combination rule (we use the symbol b) is a modified version of classical
combination rule: instead of using the set intersection operator we consider any symmetric
operator α© : Λ2 Ñ Λ.

pmbm1qpzq “
ÿ

x α©y“z
xPΛ
yPΛ

mpxqm1pyq, @z P Λ (modified combination rule)

Note that b depends on m, m1 and α© . This rule was defined in this form for the first
time by Azaza et al. in [1]. A similar modification of the classical rule was proposed by Ben
Dhaou et al. [2]. Let mbn “

´

`

pmbmq bm
˘

b ¨ ¨ ¨ bm
¯

loooooooooooooooooomoooooooooooooooooon

n times

. Let b be left associative, so we can

omit parentheses in what follows. Consider the point-wise limit limnÑ8m
bn : Λ Ñ r0, 1s defined

as:

lim
nÑ8

mbn “ K ðñ DK : Λ Ñ r0, 1s s.t. @x P Λ lim
nÑ8

mbnpxq “ Kpxq

In this paper we show how the existence of this limit depends on m and α© .

1.3 Markov chains
We recall basic notions from the Markov chain theory. Additional information and proofs can be
found in Chapter 4 of [6].

Let I be a set of states. An initial distribution τ : I Ñ r0, 1s is a probability distribution
defined over the set of states, that is

ř

xPI τpxq “ 1. Denote by xÑ y a transition from state x
to state y. Note that pxÑ yq P I2. Here we allow ourselves to use a bit of aesthetic sugar and
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write x ý in place of xÑ x. A transition distribution T : I2 Ñ r0, 1s is a probability distribution
defined over all transitions, such that for all x P I we have

ř

yPI T pxÑ yq “ 1. A Markov chain
is a triplet pI, τ, T q. A Markov process can be described inductively:

Base case. The process starts at the state x with the probability τpxq.
Inductive step. The process proceeds from the state y to the state z with the probability

T py Ñ zq.
It is useful to think about the transition distribution as a right stochastic (the sum of each

row is equal to 1) matrix T . We define Ti,j “ T piÑ jq and represent the initial distribution τ by
a vector. Using the matrix notation, the Markov process described above, can be written as τTn.
The study of convergence of the Markov chain naturally translates into the study of limnÑ8 τT

n.

Denote by x ù y a sequence of transitions with strictly positive probabilities that starts at
x and ends at y. We call this sequence of transitions a path. In general there are several paths
from x to y, if we want to distinguish them we use the following notion: x ù1 y, x ù2 y, etc.
In order to denote the set of all paths we use Pxùy.

Denote by |p| the number of transitions in a path p. The period dpxq of a state x is defined as
dpxq “ gcdpt|p| : p P Pxùxuq. A state x is said to be periodic if dpxq ą 1. A state x is said to be
aperiodic if dpxq “ 1. Sometimes there are no paths from x to x, in this case dpxq “ gcdpHq is
undefined, abusing the notation, we also say that such state x is aperiodic. A Markov chain is
said to be aperiodic when all its states are aperiodic.

An absorbing state t, denoted by t , is a state with no outgoing paths, except the self-loop
t ý. All absorbing states are aperiodic, but the converse is not true in general.

When we have x ù y and y ù x, we say that x and y communicate. Also, we say that
x communicates with itself. A communication class is a maximal subset of states J Ď I such
that any pair of states from J communicates. In this way the set of all states is paritioned into
several mutually disjoint subsets (communication classes) I “

Ťk
i“1 Ji, where k is the number of

communication classes. We denote by Jrxs the communication class of x.
A Markov chain is said to be irreducible if there is only one communication class, i.e all pairs

of states x, y P I communicate. Otherwise, a Markov chain is said to be reducible and can be
reduced into several irreducible communication classes. It is useful to represent the structure of a
reducible Markov chain as a directed acyclic graph, where nodes are the communication classes,
and where there is a directed edge Ji Ñ Jk between two different communication classes Ji and
Jk if and only if there is a transition with strictly positive probability xÑ y for some x P Ji and
y P Jk. A communication class that has no outgoing edges is called a sink class. When a sink
class contains only one state, this state is absorbing. If we leave a class, we cannot return back.
Thus, after a sufficiently large number of transitions only sink classes will matter.

A Markov chain with a transition distribution T and an initial distribution τ is said to be
convergent when limnÑ8 τT

n exists. When this limit exists and does not depend on τ we say
that the Markov chain has unique limiting distribution.

A stationary distribution π is a vector such that πT “ π. The unique limiting distribution
is a stationary one. Any finite Markov chains has a stationary distribution. But, some Markov
chains do not have the unique limiting distribution.

Classical results about convergence of finite Markov chains [6] can be summarised in the
following manner:
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Finite irreducible aperiodic ùñ Converges. Limit does not depend on the initial distribution.
Finite aperiodic ùñ Converges. Limit depends on the initial distribution. Only

absorbing states may have a positive masses at the limit.
All states are periodic ùñ Does not converge in general (but converges when the initial

distribution is a stationary one).
Only some states are periodic ùñ We should examine the structure of the directed acyclic

graph of communication classes and see what happens in
sink classes: some sink classes may be periodic, other may
not; depending on initial distribution some sink classes may
have null mass at the limit.

2 Properties of generalized combination rule and the ques-
tion of convergence

Results discussed in this subsection are not so surprising, but again for the sake of consistency, we
need to state them clearly. We start this section by discussing some properties of the generalized
combination rule b and the symmetric operation α© that replaces the intersection operator in the
classical rule. Next, we answer the question about the existence of limnÑ8m

bn. Finally, we show
how our results can be applied to the study of convergence of classical Dempster-Shafer-Smets
operator.

2.1 Properties of b

Proposition 2.1. A combination of two mass functions is another mass function.

Proof. Denote pmbm1q by m2. It is easy to see that for all x we have m2pxq ě 0, because we
compute m2 using only multiplication and addition of a non-negative numbers. Next, we show
that

ř

zPΛm
2pzq “ 1. Let Λ2

z “ tpx, yq P Λ : x α©y “ zu and proceed as follows:
ÿ

zPΛ

m2pzq “
ÿ

zPΛ

ÿ

x α©y“z
xPΛ
yPΛ

mpxqm1pyq

“
ÿ

zPΛ

ÿ

px,yqPΛ2
z

mpxqm1pyq .

Note that Λ2
z ‰ Λ2

z1 ðñ z ‰ z1, and
Ť

zPΛ Λ2
z “ Λ2. So, we can omit

ř

zPΛ and rewrite as
follows:

“
ÿ

px,yqPΛ2

mpxqm1pyq

“
ÿ

xPΛ

ÿ

yPΛ

mpxqm1pyq

“
ÿ

xPΛ

mpxq
ÿ

yPΛ

m1pyq

m and m1 are mass functions:
ř

xPΛmpxq “
ř

yPΛm
1pyq “ 1, so

ÿ

xPΛ

mpxq
ÿ

yPΛ

m1pyq “ 1
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From the definition of b and symmetry of α© it follows that b is symmetric, that is mbm1 “
m1 bm.

Proposition 2.2. In general b is non-associative, i.e. there exist mass functions m and m1 such
that the following equation does not hold

pmbm1q bm2 ‰ mb pm1 bm2q

Proof. Consider Λ “ tA,B,Cu, and the following α© :

α© A B C
A B B C
B B C C
C C C C

Let
m “ m1 “

A B C
1 0 0

m2 “
A B C
0 1 0

It is easy to see that:

pmbm1q bm2 “
A B C
0 0 1

mb pm1 bm2q “
A B C
0 1 0

Thus, in general:
pmbm1q bm2 ‰ mb pm1 bm2q

Also, the following equation does not hold in general

pmbmq b pmbmq “
`

pmbmq bm
˘

bm

Let’s try

m “
A B C

m 1 0 0

mbm “ mb2 “
A B C

m 0 1 0

mbmbm “ mb2 bm “
A B C

m 0 1 0

mbmbmbm “ mb3 bm “
A B C

m 0 1 0

pmbmq b pmbmq “ mb2 bmb2 “
A B C

m 0 0 1

As a consequence we have mb2n ‰ mbn bmbn thus the order of combinations may change
drastically the result.
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2.2 From α© to the Markov chain
Using α© , b and a mass function m we construct a Markov chain, denoted by M α© , as follows:

• The elements of Λ are the states of the chain.

• m is the initial distribution.

• The transition probability T px Ñ zq is defined as T px Ñ zq “
ř

x α©y“z,yPΛmpyq. For
example, x α©y “ z and x α©y1 “ z correspond to the part of the Markov chain presented in
Figure 1. Note that

ř

zPΛ T pxÑ zq “
ř

x α©y“z; y,zPΛmpyq “ 1.

x z

mpyq

mpy1q

or x z
mpyq `mpy1q

Figure 1 – A part of a Markov chain that appears when we have x α©y “ z and x α©y1 “ z.

Observation 2.3. The existence of x z
mpyq

implies the existence of y z
mpxq

because α©
is symmetric. In a special case of x “ y these two transitions coincide and we have only one

transition x z.
mpxq

Recall that b is defined to be left associative, and observe that

m

T
hkkikkj

bm

T
hkkikkj

bm ¨ ¨ ¨

T
hkkikkj

bm
looooooooooooomooooooooooooon

n times

“ mTn

Thus, any question about limnÑ8m
bn naturally translates into a question about limnÑ8mT

n.

Example. Consider Λ “ tA,B,C,D,Eu, and let α© be defined as follows:

A B C D E

A B C D D A
B C C D D B
C D D D D C
D D D D D D
E A B C D E

Figure 2a represents the transition matrix constructed from this α© . A partial construction of
a Markov chain is shown at Figure 2b. The full Markov chain can be seen at Figure 2c.
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A B C D E

A B C D D A
B C C D D B
C D D D D C
D D D D D D
E A B C D E

α©
A B C D E

A mpEq mpAq mpBq mpCq `mpDq 0
B 0 mpEq mpAq `mpBq mpCq `mpDq 0
C 0 0 mpEq mpAq `mpBq `mpCq `mpDq 0
D 0 0 0 mpBq `mpCq `mpDq `mpEq 0
E mpAq mpBq mpCq mpDq mpEq

T

(a) Transition matrix constructed from α©

A B C D E

A B C D D A
B C C D D B
C D D D D C
D D D D D D
E A B C D E

α©

B

C

D

mpEq

mpA
q `

mpB
q

mpCq `mpDq

(b) Partial view of a Markov chain

A B C D E

A B C D D A
B C C D D B
C D D D D C
D D D D D D
E A B C D E

α©

E A B C D

mpEq

mpAq

mpBq

mpCq

mpDq

mpEq

mpAq

mpBq

mpDq `mpCq

mpCq `mpDq

mpEq

mpAq `mpBq

mpCq `mpDq

mpEq

mpAq `mpBq `mpCq `mpDq

m
pA
q
`
m
pB
q
`
m
pC
q
`
m
pD
q
`
m
pE
q

(c) Full view of a Markov chain

Figure 2 – A Markov chain constructed from α©
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2.3 Properties of the constructed Markov chain

Using α© : Λ2 Ñ Λ we define a transitive binary relation ĺ over Λ as follows:

x α©y “ z ñ xŸ z and y Ÿ z
Let ĺ be a transitive closure of Ÿ

(ĺ)

Observation 2.4. Suppose that all masses are positive, i.e. @x P Λ : mpxq ą 0. Consider a pair
of states x, y P Λ. It is not difficult to see that there is a path x ù y if and only if x ĺ y.

Markov chain is said to be weakly connected when its underlying undirected graph is connected.
Two states x and y are weakly connected, if there is a path between them in the underlying
undirected graph.

Proposition 2.5. When all masses are positive, the Markov chain M α© is weakly connected.

Proof. Consider any pair of states x, y P Λ. Recall that α© : Λ2 Ñ Λ, so there exists z P Λ such
that x α©y “ z. By the definition of ĺ, we have x ĺ z and y ĺ z. Using Observation 2.4 we
obtain x ù z and y ù z. Hence, x and y are weakly connected via z.

The situation is slightly more complicated if some masses are null. Consider, for example, the
Markov chain from Figure 2c: let mpEq “ 1, and see that there are no paths between different
states. In order to study the cases when only some masses are positive we proceed as follows:

Let Apxq be the set of accessible states from the state x, i.e. Apxq “ ty P Λ s.t. Dx ù yuYtxu.
Let ApΥq “

Ť

xPΥApxq. Denote by MΥ
α© the Markov chain created from M α© by removing all

states that are not in ApΥq together with all corresponding transitions (i.e. we remove a transition
xÑ y if x R ApΥq or y R ApΥq), and by setting mpxq “ 0 for all x P ΛzΥ. This subchain arises
when all states from ΛzΥ have null mass.

Before proving that MΥ
α© subchain is weakly connected for all Υ Ď Λ, we prove the following

lemma.

Lemma 2.6. Any pair of states x, y P Λ with positive masses is weakly connected.

Proof. We have x α©y “ z for some z P Λ. By construction of the Markov chain we have

x z y
mpyq mpxq

. We also have mpxq ą 0 and mpyq ą 0, so there are x ù z and y ù z.
Therefore, x and y are weakly connected.

Proposition 2.7. For all Υ Ď Λ the subchain MΥ
α© is weakly connected.

Proof. Consider any pair of different states x, y from MΥ
α© . Four possibilities exist:

• When mpxq ą 0 and mpyq ą 0 we use Lemma 2.6 to show that x and y are weakly connected.

• When mpxq ą 0 and mpyq “ 0 there are two subcases:

– If y P Apxq, we have x ù y.

– Otherwise, there is a state z ‰ x with a positive mass, such that y P Apzq and z P Υ,
since the Markov chain MΥ

α© contains only the states from
Ť

uPΥApuq. So, we have
z ù y and (by Lemma 2.6) x and z are weakly connected. Hence, x and y are weakly
connected.

• The case when mpyq ą 0 and mpxq “ 0 is symmetrically equivalent to the previous one.
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• When mpxq “ mpyq “ 0 we have two subcases:

– There is a state z with positive mass such that x, y P Apzq. In this case, we have
z ù x and z ù y. Thus, x and y are weakly connected.

– There are two different states z and w states with positive masses such that x P Apzq
and y P Apwq. So, we have z ù x, w ù y. By Lemma 2.6) z and w are weakly
connected. Hence, x and y are weakly connected.

2.3.1 Non-necessary reflexive poset of states

By definition, ĺ is a transitive binary relation defined on Λ. Sometimes this relation is antisym-
metric, i.e. if x ĺ y and y ĺ x then x “ y. A set together with an antisymmetric transitive
binary relation is called the non-necessary reflexive poset: for some x the relation is reflexive, i.e.
x ĺ x, but for another x it is irreflexive, i.e. x ł x.

Proposition 2.8. When pΛ,ĺq is a non-necessary reflexive poset, there is unique maximal
element in this poset.

Proof. Suppose that there are two different maximal elements x and y. Recall that α© : Λ2 Ñ Λ,
so there is z P Λ such that x α©y “ z. By the definition of ĺ we have x ĺ z. Since, element x is
maximal, so z “ x, but in this case we have x α©y “ x and y ĺ x, thus y cannot be maximal.

Proposition 2.9. When pΛ,ĺq is a non-necessary reflexive poset, a Markov chain M α© always
converges.

Proof. Recall that x ĺ z, obtained from x α©y “ z, corresponds to x
mpyq
ÝÝÝÑ z in the Markov chain.

When pΛ,ĺq is a non-necessary reflexive poset, there is no cycles in the Markov chain besides
self-loops, because if there is a cycle xÑ z Ñ . . .Ñ x then we should have

1. x ĺ z ĺ . . . ĺ x (by transitivity)

2. x “ z (by antisymmetry)

Thus, any state in the Markov chain is aperiodic. Finite aperiodic chains always converge.

When pΛ,ĺq is a non-necessary reflexive poset, the limit limnÑ8 τT
n may depend on the

initial distribution τ , but only absorbing (i.e. with self-loops and without outgoing transitions of
positive mass) states may have a positive masses at the limit. Consider a state x with a self-loop
x ýmpxq. Let mpxq “ 1: all mass will rests at the state x forever. If there is only one state t with
a self-loop t ýmptq, then we have plimnÑ8 τT

nqptq “ 1 for any initial distribution τ .
The Markov chain from Figure 2c can have only two convergent states E and D. Moreover,

plimnÑ8 τT
nqpEq “ 1 if and only if mpEq “ 1.

2.3.2 Strict poset of communication classes

Denote by J the set of all communication classes. Recall that a Markov chain can be represented
as a directed acyclic graph (DAG), where nodes are the communication classes, and where there
is a directed edge Ji Ñ Jk between two different communication classes Ji and Jk if and only if
there is a transition wtih strictly positive probability xÑ y for some x P Ji and y P Jk. Suppose
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that all masses are positive, and define a binary relation ă over the set of all communication
classes J in natural way:

Ji Ñ Jk ñ Ji Ì Jk
Let ă be a transitive closure of Ì (ă)

The set of all communication classes J together with ă form a strict (irreflexive) poset.

Proposition 2.10. When all state masses are positive, i.e. @x P Λ : mpxq ą 0, the DAG of
communication classes of a Markov chain M α© is weakly connected.

Proof. The DAG of communication classes is created by fusion of some states, so the weak
connectivity of the DAG follows from the weak connectivity of the Markov chain (see Proposi-
tion 2.5).

Proposition 2.11. For all Υ Ď Λ the DAG of communication classes of a Markov chain MΥ
α© is

weakly connected.

Proof. This proof is identical to the previous proof, but we use Proposition 2.7 instead of
Proposition 2.5.

Lemma 2.12. Consider two states x and y, if there is a path x ù y then we have only two
possibilities: Jrxs “ Jrys or Jrxs ă Jrys.

Proof. There is a path x ù y thus, if Jrxs ‰ Jrys, we have Jrxs ă Jrys by the definition of the
DAG of communication classes.

Proposition 2.13. When all state masses are positive, the DAG of communication classes of
a Markov chain M α© have only one sink class. Equivalently: the poset pJ ,ăq have only one
maximal element.

Proof. Suppose there are two maximal elements J and J 1. Take some x P J and y P J 1. Consider
x α©y “ z. By construction of M α© we have x ù z. So, by Lemma 2.12 we obtain Jrxs “ Jrzs
or Jrxs ă Jrzs. In the latter case we have a contradiction (as we supposed that J is maximal).
Symmetrically, from y α©x “ z we obtain Jrys “ Jrzs. Hence, Jrys “ Jrzs “ Jrxs, that means
J “ J 1.

If there are some states with null masses, the DAG of communication classes of the Markov
chain constructed from Λ and α© may have several sinks. Consider Figure 3, and let mpXq “ 0.5,
mpY q “ 0.5. In this case, the state Z will have the mass 0.5 at the limit, and, in addition, there
are two periodic communication classes: tW,W 1u and tV, V 1u. It is easy to see (by looking only
at thick black transitions), that this Markov chain have three sinks: Z, tW,W 1u and tV, V 1u.

The following theorem and its corollaries follow naturally from our propositions:

Theorem 2.14. limnÑ8m
bn exists if and only if all sink classes of the Markov chain MΥ

α© are
aperiodic, where Υ “ tx P Λ s.t. mpxq ą 0u. Only the states from sink classes may have positive
masses at the limit.

By the Proposition 2.13, the DAG of communication classes of a Markov chain MΥ
α© “M α©

contains only one sink class when all masses are positive. Thus, we obtain the following corollary.

Corollary 2.15. When all masses are positive, i.e. Υ “ Λ, limnÑ8m
bn exists if and only if

the unique sink is aperiodic.
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X Y Z W W 1 V V 1

X W Z Z W 1 W V 1 V
Y Z V Z W 1 W V 1 V
Z Z Z

ZW W 1 W 1

W 1 W W
V V 1 V 1

V 1 V V

α©

X

Y

W

W 1

V

V 1

Z

mpXq `mpW 1q

mpY q `mpZq

m
pW
q

m
pV
q

mpV 1q

m
pW
q

mpW
1 q

mpY q `mpV 1q

mpY
q `

mpZ
q

m
pV
q

m
pW
q

mpW
1 q

m
pX
q
`
m
pY
qm

pX
q
`
m
pY
q

m
pX
q
`
m
pY
q m

pX
q
`
m
pY
q

m
pZ
q`

m
pV
q`

m
pV
1
q`

m
pW
q`

m
pW
1
q

m
pZ
q`

m
pV
q`

m
pV
1 q
`

m
pW
q`

m
pW
1 q

m
p
Z
q
`

m
p
V
q
`

m
p
V
1
q
`

m
p
W
q
`

m
p
W
1
q

m
p
Z
q
`

m
p
V
q
`

m
p
V
1 q
`

m
p
W
q
`

m
p
W
1 q

m
pX
q
`
m
pY
q
`
m
pZ
q
`
m
pV
q
`
m
pV
1q
`
m
pW
q
`
m
pW

1q

Figure 3 – A butterfly-like Markov chain constructed from α© . When all states have positive
masses, Z is the unique sink. But if only mpXq ą 0 and mpY q ą 0, there are three sinks:
Z, tW,W 1u, tV, V 1u.
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Corollary 2.16. The following statements are equivalent:

• limnÑ8m
bn exists for all m.

• For all Υ Ď Λ the DAG of communication classes of a Markov chain MΥ
α© has only aperiodic

sink classes.

2.4 Convergence of classical Dempster-Shafer-Smets operator
In the classical case (see Subsection 1.1) Λ “ PpΩq and α© is the set intersection operator X.
The equation X X Y “ Z translates into X ĺ Z and Y ĺ Z. Observe that ĺ in this case behaves
precisely like the set inclusion operator Ď. The set PpΩq of subsets of Ω ordered by Ď is a classical
example of a poset so, by Proposition 2.9, limnÑ8m X©m X© ¨ ¨ ¨ X©m

loooooooooomoooooooooon

n times

always exists. Denote this

limit by m˚. If only the states from Υ Ď PpΩq have positive masses, then the limit converges to
its intersection, i.e. to the state s “

Ş

xPΥ x. Thus, we have m˚psq “ 1 at the limit. In particular,
if all masses are positive, the only sink is the empty set, and we have m˚pHq “ 1. Denote by MΥ

X©
the Markov chain associated with the iterative application of the classical Dempster-Shafer-Smets
combination rule when only the states from Υ have positive masses. Figure 4 illustrates the
Markov chain MΥ

X© , where Υ “
 

tA,B,Cu, tA,Bu, tA,Cu, D
(

.

tA,Bu

tA,B,Cu

tA,Cu

A D

H

m
ptA

,B
u
q
`
m
ptA

,B
,C
u
q

m
ptA

,C
u
q
`
m
ptA

,B
,C
u
q

mptA,B,Cuq

m
pt
A
,B
uq

m
ptA
,C
uq

m
ptA
,B
uq
`
m
ptA
,C
u
`
m
ptA
,B
,C
uqq

mpDq

mptA,Buq `mptB,Cuq `mpDq `mptA,B,Cuq

m
pD
q

m
ptA
,C
uq

m
pD
q

m
pt
A
,B
uq

m
pD
q

m
pD
q

mp
tA,

Bu
q `

mp
tA,

Cu
q `

mp
tA,

B,
Cu
q

Figure 4 – A Markov chain associated with a classical Dempster-Shafer-Smets combination rule.
Ω “ tA,B,C,Du. Initially all masses are null except mptA,B,Cuq, mptA,Buq, mptA,Cuq and
mpDq. The whole mass “flows” to the state H. In the case of the normalised classical combination
rule, only the states A and D may have a positive mass at the limit.
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2.5 Convergence of normalised Dempster-Shafer-Smets operator
Here we consider the normalised version of the classical rule, that is

pm1 X m2qpHq “ 0

pm1 X m2qpCq “
pm1 X©m2qpCq
pm1 X©m2qpHq

@C P PpΩqztHu
(normalised classical rule)

Denote by MAXS the set of sinks of the Markov chain obtained from MΥ
α© by removing tHu.

For example, in Markov chain from Figure 4 we have MAXS “ tA,Du.
Let m1 “ m, mn “ mn´1 X m1, and consider the behaviour of limnÑ8mn.

Proposition 2.17. In the case of the iterative application of the normalised classical Dempster-
Shafer-Smets combination rule, the whole mass will be (at the limit) distributed between elements
of MAXS.

Proof. Recall that x ĺ y, obtained from x X y “ z, corresponds to x
mpyq
ÝÝÝÑ z in the Markov

chain MΥ
X© . Take any minimal (in ĺ-sense) state Y R MAXS with a positive mass. Note that

mpY q ‰ 1, otherwise it should be in MAXS. Thus, there exists the following chain of subsets
Yk Ă Yk´1 Ă Yk´2 Ă ¨ ¨ ¨ Ă Y1 “ Y such that for any i P r1, k ´ 1s there is a transition of
positive mass Yi Ñ Yi`1 and Yk P MAXS (for example, in Markov chain from Figure 4 we have
tAu Ă tA,Bu Ă tA,B,Cu).

In what follows, we compare mnpY2q and mnpY1q, and we show that
`

limnÑ8mn

˘

pY1q “ 0.
Next, we use the induction in order to show that only the “last” state Yk PMAXS may have a
positive mass at the limit.

Let X “ Y2. X is connected to Y by a transition Y Ñ X of a positive mass. Let mpY Ñ Xq
be the mass of the transition from Y to X. The only incoming transition to Y is a self-loop
Y ým1pY q, thus we have

pmn´1 X©m1qpY q “ mn´1pY q ¨m1pY q

The situation is a bit more complex around the state X, where we have a self-loop, a transition
Y Ñ X, and, possibly, other states Z1, Z2, . . . , Z` with transitions Zi Ñ X for any i P r1, `s:

Y X Zi
mpYÑXq

m1pY q`mpXq`ε
1

εi
i P r1, `s

So, we can write

pmn´1 X©m1qpXq “ mn´1pXq ¨
`

m1pY q `mpY Ñ Xq ` ε1
˘

` ε

where, ε “
ř`
i“1 εi and ε

1 are some non-negative masses. We expect the ratio between mnpY q
and mnpXq as follows:

mnpY q

mnpXq
“

pmn´1 X©m1qpY q
pmn´1 X©m1qpHq

pmn´1 X©m1qpXq
pmn´1 X©m1qpHq

“
pmn´1 X©m1qpY q

pmn´1 X©m1qpXq
ď

mn´1pY q ¨m1pY q

mn´1pXq ¨
`

m1pY q `mpY Ñ Xq
˘ ď K

mn´1pY q

mn´1pXq

where K “
m1pY q

m1pY q`m1pYÑXq
ă 1. We obtain mnpY q

mnpXq
ď

m1pY q
m1pXq

Kn, so limnÑ8
mnpY q
mnpXq

“ 0, and, in
particular, limnÑ8mnpY q “ 0.
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3 Open questions

From practical points of view it may be important to consider other combinations rules (see
for exemple [4]), improve the Proposition 2.17 by considering the question “How exactly the
whole mass is distributed over MAXS?”, discuss convergence speed and numerical methods of limit
calculation, answer the question “When a transition matrix constructed from symmetric binary
operator is diagonalisable or not”. The following theoretical question seems to be very intriguing:
given a Markov chainM , is there some α© such thatM α© is isomorphic toM? Another interesting
direction consists in the study of typical (randomly generated) symmetric binary operation defined
over the set Λ, when |Λ| Ñ 8, and when the cardinality of Λ exceeds ℵ0.
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